\(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx\) [267]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 54 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=-\frac {\sqrt {2} \text {arcsinh}\left (\frac {\tan (c+d x)}{1+\sec (c+d x)}\right )}{d}+\frac {2 \text {arcsinh}\left (\frac {\tan (c+d x)}{\sqrt {1+\sec (c+d x)}}\right )}{d} \]

[Out]

2*arcsinh(tan(d*x+c)/(1+sec(d*x+c))^(1/2))/d-arcsinh(tan(d*x+c)/(1+sec(d*x+c)))*2^(1/2)/d

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3906, 3886, 221, 3892} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=\frac {2 \text {arcsinh}\left (\frac {\tan (c+d x)}{\sqrt {\sec (c+d x)+1}}\right )}{d}-\frac {\sqrt {2} \text {arcsinh}\left (\frac {\tan (c+d x)}{\sec (c+d x)+1}\right )}{d} \]

[In]

Int[Sec[c + d*x]^(3/2)/Sqrt[1 + Sec[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcSinh[Tan[c + d*x]/(1 + Sec[c + d*x])])/d) + (2*ArcSinh[Tan[c + d*x]/Sqrt[1 + Sec[c + d*x]]])/d

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 3892

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-Sqrt[2
])*(Sqrt[a]/(b*f)), Subst[Int[1/Sqrt[1 + x^2], x], x, b*(Cot[e + f*x]/(a + b*Csc[e + f*x]))], x] /; FreeQ[{a,
b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d - a/b, 0] && GtQ[a, 0]

Rule 3906

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d/b, I
nt[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x], x] - Dist[a*(d/b), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*C
sc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {\sqrt {\sec (c+d x)}}{\sqrt {1+\sec (c+d x)}} \, dx+\int \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \, dx \\ & = -\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2}} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {1+\sec (c+d x)}}\right )}{d}+\frac {\sqrt {2} \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2}} \, dx,x,-\frac {\tan (c+d x)}{1+\sec (c+d x)}\right )}{d} \\ & = -\frac {\sqrt {2} \text {arcsinh}\left (\frac {\tan (c+d x)}{1+\sec (c+d x)}\right )}{d}+\frac {2 \text {arcsinh}\left (\frac {\tan (c+d x)}{\sqrt {1+\sec (c+d x)}}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.41 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=\frac {\left (2 \arcsin \left (\sqrt {\sec (c+d x)}\right )-\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )\right ) \cot (c+d x) \sqrt {-\tan ^2(c+d x)}}{d} \]

[In]

Integrate[Sec[c + d*x]^(3/2)/Sqrt[1 + Sec[c + d*x]],x]

[Out]

((2*ArcSin[Sqrt[Sec[c + d*x]]] - Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]])*Cot[c +
d*x]*Sqrt[-Tan[c + d*x]^2])/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(181\) vs. \(2(50)=100\).

Time = 1.72 (sec) , antiderivative size = 182, normalized size of antiderivative = 3.37

method result size
default \(\frac {\left (\arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}+\arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right ) \sqrt {1+\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \cos \left (d x +c \right )^{2}}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(182\)

[In]

int(sec(d*x+c)^(3/2)/(1+sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)+arctan(1/2*(cos(d*x+c)-si
n(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/
(cos(d*x+c)+1))^(1/2)))*(1+sec(d*x+c))^(1/2)*sec(d*x+c)^(3/2)*cos(d*x+c)^2/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^
(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (50) = 100\).

Time = 0.29 (sec) , antiderivative size = 223, normalized size of antiderivative = 4.13 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=\frac {\sqrt {2} \log \left (-\frac {2 \, \sqrt {2} \sqrt {\frac {\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \log \left (-\frac {\cos \left (d x + c\right )^{2} + 2 \, \sqrt {\frac {\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}{\cos \left (d x + c\right ) + 1}\right ) + \log \left (-\frac {\cos \left (d x + c\right )^{2} - 2 \, \sqrt {\frac {\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}{\cos \left (d x + c\right ) + 1}\right )}{2 \, d} \]

[In]

integrate(sec(d*x+c)^(3/2)/(1+sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*log(-(2*sqrt(2)*sqrt((cos(d*x + c) + 1)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + cos(d*x +
 c)^2 - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - log(-(cos(d*x + c)^2 + 2*sqrt((cos(d*x +
c) + 1)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - cos(d*x + c) - 2)/(cos(d*x + c) + 1)) + log(-(cos(d*x
+ c)^2 - 2*sqrt((cos(d*x + c) + 1)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - cos(d*x + c) - 2)/(cos(d*x
+ c) + 1)))/d

Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {\sec {\left (c + d x \right )} + 1}}\, dx \]

[In]

integrate(sec(d*x+c)**(3/2)/(1+sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**(3/2)/sqrt(sec(c + d*x) + 1), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 473 vs. \(2 (50) = 100\).

Time = 0.43 (sec) , antiderivative size = 473, normalized size of antiderivative = 8.76 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=-\frac {\sqrt {2} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 1\right ) - \sqrt {2} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 1\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right )}{2 \, d} \]

[In]

integrate(sec(d*x+c)^(3/2)/(1+sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/2*(sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))
)^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) - sqrt(2)*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x
+ c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1
) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 +
2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))
) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))
^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x
+ c))) + 2) - log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x +
 c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos
(d*x + c))) + 2) + log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(
d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c)
, cos(d*x + c))) + 2))/d

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {\sec \left (d x + c\right ) + 1}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)/(1+sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/sqrt(sec(d*x + c) + 1), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {1+\sec (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}+1}} \,d x \]

[In]

int((1/cos(c + d*x))^(3/2)/(1/cos(c + d*x) + 1)^(1/2),x)

[Out]

int((1/cos(c + d*x))^(3/2)/(1/cos(c + d*x) + 1)^(1/2), x)